A femtosecond laser raster-type in situ repetitive direct writing technique was used for the fabrication of anti-reflective microhole structures in Germanium (Ge) in the visible near-infrared range (300–1800 nm). This technique builds a layer of microstructured arrays on the surface of Ge, enabling Ge to exhibit excellent anti-reflective properties. The large-area micro-nanostructures of Ge were fabricated using femtosecond laser raster-type in situ repetitive direct writing. Ge microstructures are characterized by their structural regularity, high processing efficiency, high reproducibility, and excellent anti-reflective properties. Experimental test results showed that the average reflectance of the Ge microporous structure surface in the range of 300–1800 nm was 2.25% (the average reflectance of flat Ge was 41.5%), and the lowest reflectance was ~1.6%. This microstructure fabrication drastically reduced the optical loss of Ge, thus enhancing the photothermal utilization of Ge. The many nanoburrs and voids in the Ge microporous structure provided excellent hydrophobicity, with a hydrophobicity angle of up to 133 ± 2° (the hydrophobicity angle of flat Ge was 70 ± 2°). The high hydrophobicity angle allows for strong and effective self-cleaning performance. The femtosecond laser raster-type in situ repeatable direct writing technology has many desirable properties, including simplicity, high accuracy, flexibility, and repeatability, that make it one of the preferred choices for advanced manufacturing. The Ge micro-nanostructured arrays with excellent optical anti-reflective properties and hydrophobicity have become an attractive alternative to the current photo-thermal absorbers. It is expected to be used in many applications such as solar panels, photovoltaic sensors, and other optoelectronic devices.
Read full abstract