In fusion reactors, plasma facing components (PFC) and in particular the divertor will be irradiated with high fluxes of low energy (∼100 eV) helium and hydrogen ions. Tungsten is one of the leading candidate divertor materials for ITER and DEMO fusion reactors. However, the behavior of tungsten under high dose, coupled helium/hydrogen exposure remains to be fully understood. The PFC response and performance changes are intimately related to microstructural changes, such as the formation of point defect clusters, helium and hydrogen bubbles or dislocation loops. Computational materials modeling has been used to investigate the mechanisms controlling microstructural evolution in tungsten following high dose, high temperature helium exposure. The aim of this study is to understand and predict helium implantation, primary defect production and defect diffusion, helium-defect clustering and interactions below a tungsten surface exposed to low energy helium irradiation. The important defects include interstitial clusters, vacancy clusters, helium interstitials and helium-vacancy clusters. We report results from a one-dimensional, spatially dependent cluster dynamics model based on the continuum reaction–diffusion rate theory to describe the evolution in space and time of all these defects. The key parameter inputs to the model (diffusion coefficients, migration and binding energies, initial defect production) are determined from a combination of atomistic materials modeling and available experimental data.