Electrically driven kinklike distortion regimes in a microsized liquid crystal channel have been investigated both experimentally and analytically. Kinklike distortion waves were excited by the interaction between the electric field E and the gradient ∇n[over ̂] of the director field in a homogeneously aligned liquid crystal (HALC) channel. Having obtained the evolution of the normalized light intensity, which was recorded by the high-speed camera, the process of excitation and evolution of the traveling wave in the HALC channel was visualized for the first time. It was shown, based on a nonlinear extension of the classical Ericksen-Leslie theory, that in the case when the electric field E≫E_{th}, the flow of liquid crystal material completely stops and a new mechanism for converting the electric field arises in the form of the electrically driven distorting traveling kinklike wave, which can be excited in the LC channel, composed of 4-n-pentyl-4^{'}-cyanobiphenyl molecules.
Read full abstract