Sodium bismuth titanate-based ferroelectric materials have a promising application in modern microdevices due to their strong ferroelectricity and high Curie temperature. The domain structure plays a crucial role in the piezoelectric and ferroelectric properties of (1-x)(Bi0.5Na0.5)TiO3-xBaTiO3 ((1-x)BNT-xBT)(x=0, 0.06, 0.08, 0.10) ceramic coatings. In this paper, (1-x)BNT-xBT ceramic coatings were prepared by supersonic plasma spraying. Piezoresponse-force microscopy (PFM) was employed to gain insight into the microscopic domain evolution of (1-x)BNT-xBT ceramic coatings. Piezoelectric-force Microscopy (PFM) results show that the 0.92BNT-0.08BT ceramic coating exhibits relatively homogeneous striped domains and island domains, as well as a maximum amplitude response with an average amplitude intensity of 67.6 pm, which increases the localized piezoelectric response of the ceramic coating. The switching spectroscopy piezoelectric-force microscopy (SS-PFM) results show that the local piezoelectric coefficient (PRmax) of the 0.92BNT-0.08BT ceramic coating reaches 426.5 pm/V at 15 V, and the ferroelectric domains exhibit significant switching behavior. This study provides new ideas to further understand the relationship between microscopic electrical domains and macroscopic properties of these important lead-free piezoelectric ceramics.