Electric fields in the junction of a scanning tunneling microscope (STM) are generally considered to have a negligible impact on the vacuum level (VL) of materials. We employed field emission resonance (FER) in the STM, combined with the triangular potential model, to measure the VL of the Ag(100) surface under varying electric currents. Unexpectedly, our results reveal that the VL exhibits a linear positive energy shift with increasing electric field strength. We suggest that this Stark shift in the VL arises from local Fermi level alignment induced by the STM tip. Additionally, we examined the VL of Ag islands grown on Cu(111) and Au(111) surfaces under different currents. Despite the Ag island having a lower work function than the Cu(111) and Au(111) surfaces, the energy shift in the VL with respect to the electric field on the Ag island is almost identical to that on the substrate under the same tip structure. This suggests that the Stark shift of the VL is insensitive to the work function. These findings are crucial for utilizing FER to measure local work function variations on surfaces, as the measured value is not influenced by the STM tip structure or the tunneling current, both of which can alter the electric field.