Abstract Background: Leukemia inhibitory factor (LIF) and its receptor LIFR are over-expressed in multiple solid tumors and play a key role in tumor growth, progression, and resistance to standard anti-cancer treatments. Triple-negative breast cancer (TNBC) lacks targeted therapies and represents a disproportional share of breast cancer (BCa) mortality. TNBC exhibits autocrine stimulation of the LIF/LIFR axis and overexpression of LIF is associated with poorer relapse-free survival in BCa patients. LIF signaling also promotes maintenance of stem cells. Therefore, targeting the LIF/LIFR axis may have therapeutic utility in TNBC. Methods: We rationally designed a small organic molecule (EC359) that emulates the LIF/LIFR binding site and functions as a LIFR inhibitor from a library of compounds. In silico docking studies were used to identify the putative interaction of the EC359 and LIF/LIFR complex. Direct binding of EC359 to LIFR was confirmed using surface plasmon resonance (SPR) and microscale thermophoresis technique (MST) assays. In vitro activity was tested using Cell-Titer Glo, MTT, invasion, and apoptosis assays. Mechanistic studies were conducted using Western blot, reporter gene assays, and RNA-seq analysis. Xenograft, patient-derived xenograft (PDX), and patient-derived explant (PDEX) models were used for preclinical evaluation and toxicity. Results: Molecular docking studies showed that EC359 interacts at the LIF/LIFR binding interface. SPR and MST studies confirmed direct interaction of EC359 to LIFR. EC359 reduced the growth of TNBC cells with high potency (IC50 50-100nM) and promoted apoptosis. Further, EC359 treatment reduced invasion and stemness of TNBC cells. EC359 activity is dependent on the expression levels of LIFR and showed little or no activity on TNBC cells that have low levels of LIFR or ER+ve BCa cells. Further, EC359 significantly reduced the viability of cisplatin and taxane-resistant TNBC cells and enhanced the efficacy of HDAC inhibitors. Mechanistic and biochemical studies showed that EC359 interacts with LIFR and effectively blocking LIF/LIFR interactions. EC359 also blocked LIFR interactions with other LIFR ligands such as oncostatin M, ciliary neurotrophic factor, and cardiotrophin-1. EC359 treatment attenuated the activation of LIF/LIFR driven pathways including STAT3, mTOR, AKT, and MAPK. RNA-seq analysis identified regulation of apoptosis as one of the important pathway modulated by EC359. In TNBC xenograft and PDX assays, EC359 significantly reduced tumor progression. Further, using human primary BCa PDEX cultures, we demonstrated that EC359 has the potential to substantially reduce the proliferation of human BCa. Pharmacologically, EC359 exhibited high oral bioavailability and long half-life with a wide therapeutic window. Conclusions: EC359 is a novel targeted therapeutic agent that inhibits LIF/LIFR oncogenic signaling in TNBC via a unique mechanism of action. EC359 has the distinct pharmacologic advantages of oral bioavailability, in vivo stability, and is associated with minimal systemic side effects. (DOD BCRP grant #BC170312) Citation Format: Viswanadhapalli S, Luo Y, Sareddy GR, Santhamma B, Zhou M, Li M, Pratap UP, Altwegg KA, Li X, Srinivasan U, Ma S, Chang A, Riveros AC, Zhang KY, Dileep KV, Pan X, Murali R, Bajda M, Raj G, Brenner A, Manthati V, Rao M, Tekmal RR, Nair HB, Nickisch KJ, Vadlamudi RK. Development of a first-in-class small molecule inhibitor (EC359) targeting oncogenic LIF/LIFR signaling for the treatment of triple negative breast cancer [abstract]. In: Proceedings of the 2018 San Antonio Breast Cancer Symposium; 2018 Dec 4-8; San Antonio, TX. Philadelphia (PA): AACR; Cancer Res 2019;79(4 Suppl):Abstract nr P2-06-02.
Read full abstract