Surface interactions are a concern in microscale separations, where analyte adsorption can decrease the speed, sensitivity, and resolution otherwise achieved by miniaturization. Here, we functionally characterize the surface adsorption of hot-embossed cyclic olefin copolymer (COC) micro free-flow electrophoresis (μFFE) devices using two-dimensional nLC × μFFE separations, which introduce a 3- to 5 s plug of analyte into the device and measure temporal broadening that arises from surface interactions. COC is an attractive material for microfluidic devices, but little is known about its potential for surface adsorption in applications with continuous fluid flow and temporal measurements. Adsorption was minimal for three small molecule dyes: positively charged rhodamine 123, negatively charged fluorescein, and neutral rhodamine 110. Temporal peak widths for the three dyes ranged from 3 to 7 s and did not change significantly with increasing transit distance. Moderate adsorption was observed for Chromeo P503-labeled myoglobin and cytochrome c with temporal peak widths around 20 s. Overall, the COC surface adsorption was low compared to traditional glass devices, where peak widths are on the order of minutes. Improvements in durability, long-term performance, and ease of fabrication, combined with low overall adsorption, make the COC μFFE devices a practical choice for applications involving time-resolved continuous detection.
Read full abstract