Drug delivery systems are a new approach to increase therapeutic efficacy and to reduce the side effects of traditional treatments. Calcium phosphates (CaPs) have been studied as drug delivery systems, especially in bone diseases. However, each system has some particularities that depend on the physical and chemical characteristics of the biomaterials and drug interaction. In this work, granulated CaPs were used as a matrix for loading the anticancer drug carboplatin using the high-vacuum method. Five compositions were applied: hydroxyapatite (HA), β-tricalcium phosphate (β-TCP), biphasic HAp 60%/β-TCP 40% (BCP), β-TCP/MgO nanocomposite, and β-TCP/SiO2 nanocomposite. Carboplatin drug in 50, 60, and 70 mg/g was precipitated on the surface of CaPs. Morphological, chemical and surface modifications in the carboplatin-CaPs were investigated by scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), backscattered electron microscopy (BSE), X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), Fourier transform infrared (FT-IR), and Raman spectroscopy. The characterization of the CaP-carboplatin biomaterials showed heterogeneous crystalline precipitation of the drug, and no morphological modifications of the CaPs biomaterials. The in vitro release profile of carboplatin from CaPs was evaluated by the ultraviolet-visible (UV-Vis) method. The curves showed a burst release of upon 60% of carboplatin loaded followed by a slow-release of the drug for the time of the study. The results were typical of a low-interaction system and physisorption mechanism. The high-vacuum method permitted to load the high amount of carboplatin drug on the surface of the biomaterials despite the low interaction between carboplatin and CaPs.
Read full abstract