Treating psoriasis presents a major clinical challenge because of the limitations associated with traditional topical glucocorticoid therapy. This study introduced a drug delivery system utilizing zinc-doped mesoporous silica nanoparticle (Zn-MSN) and microneedle (MN), designed to enhance drug utilization for prolonged anti-inflammatory and anti-itch effects. The MN system facilitated the transdermal delivery of betamethasone dipropionate (BD), allowing its slow release. The BD@Zn-MSN-MN system promoted the polarization of macrophages towards the anti-inflammatory M2 phenotype, achieving superior anti-inflammatory effects compared to the clinically used BD cream. Additionally, this study demonstrated that BD@Zn-MSN-MN could further alleviate itching in psoriasis-afflicted mice by decreasing the excitability of the transient receptor potential vanilloid V1 (TRPV1) ion channel positive neurons and reducing the release of calcitonin gene-related peptide (CGRP) in the dorsal root ganglion (DRG). These findings offer new insights and effective therapeutic options for the future design of transdermal drug delivery for psoriasis.
Read full abstract