We have developed a high-precision micrometeorological system capable of measuring emissions of nitrous oxide (N2O) from up to four adjacent pasture plots. The system can be used to compare the influence of environmental factors and management practice on N2O emissions at the paddock scale. The system is capable of determining a minimum detectable N2O difference of the order of 40 pmol/mol, with an ability to resolve flux differences among plots of ~26 µg (N2O-N)/m2.h. So as to independently verify the emission estimates of the micrometeorological system, we developed a calibrated N2O-release system and compared known release rates with the micrometeorological flux estimates. Adjustable release rates up to the equivalent average surface flux of ~500 µg (N2O-N)/m2.h were achieved using mass flow-controlled input of pure N2O in a compressed air stream over two 1.5-ha plots upwind of flux-measurement masts. The comparison of network release rate with measured emission rate was quite variable and complicated by a significant and varying background emissions of N2O from the soil. For optimal steady-wind cases, the ratio of uncorrected measured flux to known release, including the estimated background, was of the order of 0.4–0.5; this ratio is likely to be influenced by the turbulent Schmidt number. Flux estimates for uncorrected flux gradient and WindTrax backward Lagrangian Stochastic method (which includes Schmidt correction) agreed well with a ratio of 0.54. The experiment highlighted the need for accurate estimates of gas eddy diffusivity in the micrometeorological gradient or difference-based flux measurement of N2O.
Read full abstract