With the growing interest in space exploration, cryogenic technologies involving two-phase flow and heat transfer are in high demand to successfully procure advanced space applications such as fuel depots and nuclear thermal propulsion (NTP) systems for deep space missions. However, the unique and extreme thermal properties of cryogenic fluids introduce distinct flow boiling fluid physics and energy transport phenomena, which differ significantly from those observed with conventional fluids. Understanding the unique two-phase physics in cryogenic flow boiling remains an ongoing challenge. Furthermore, the lack of readily available microgravity cryogenic steady-state heat transfer data hinders the assessment of gravitational effects on cryogenic flow boiling. This study aims to elucidate the gravitational effects on two-phase fluid physics and heat transfer by conducting the first-ever experimental measurement of cryogenic flow boiling performance using a steady-state heated method in a reduced gravity environment. Parabolic flight experiments were performed to acquire both heat transfer measurements and high-speed video of interfacial behaviors, under varying gravity levels (microgravity, hypergravity, Lunar gravity, and Martian gravity). The experiments involved flow boiling of liquid nitrogen (LN2) with a near-saturated inlet along a circular heated tube of dimensions 8.5-mm inner diameter and 680-mm heated length. The operating parameters varied are mass velocity of 398.3 – 1342.8 kg/m2s, inlet quality of -0.08 to -0.01, and inlet pressure of 413.68 – 689.48 kPa. Captured microgravity flow patterns range from bubbly to annular, all having vapor structures that are larger than those under higher gravity levels. Under microgravity, absence of buoyancy yields symmetrical vapor structures without flow stratification, laying a physical foundation for the distinct two-phase heat transfer trends during LN2 flow boiling in microgravity. Transient data collected during the flight parabolas exhibited decreasing heated wall temperature as the aircraft transitioned from hypergravity to microgravity phases. The temperature variation indicated an enhancement in flow boiling heat transfer with decreasing gravity levels and a reduction with increasing gravity levels. The effect of reduced gravity on cryogenic flow boiling heat transfer coefficient (HTC) is discussed based on steady state heat transfer analysis. Seminal HTC correlations are evaluated against the measured microgravity HTC data, of which one is identified for superior accuracy in predicting microgravity data. Finally, a new HTC correlation is proposed to improve accuracy of microgravity predictions, yet there still exists room for further improvement with future terrestrial flow boiling experiments at different flow orientations relative to Earth gravity.