A new approach to the mechanical response of micro-mechanic problems is presented using the modified couple stress theory. This model captured micro-turns due to micro-particles' rotations which could be essential for microstructural materials and/or at small scales. In a micro media based on the small rotations, sub-particles can also turn except the whole domain rotation. However, this framework is competent for a static medium. In terms of dynamic investigations of micro materials, it is required to involve micro-rotations' mass inertias. This fact persuades us to pay particular attention to the micro mechanics' samples and directed us to re-derive the modified couple stress model to propose and represent a new micro-mechanic approach which is well-deserved, especially for dynamic studies of microstructures. In carrying out this job, the classical beam has provided the basic form of formulation procedure. The continuum medium has been limited to a square flat non-porous beam deducing a homogeneous isotropic micromaterial. As long as the time-dependent results are concerned due to studying micro-mass inertia in time history, there would be two solution steps. The Galerkin decomposition technique is imposed in accord with an analytical postulate to issue the algebraic problem distributing time-dependent equations. The latter, the Homotopy perturbation method delivers time-dependent outcomes. The solution methods have been validated by building numerical models in Abaqus software. On the new achievements of this study, one can declare that both static and dynamic length scale parameters are very effective in order to study vibrations of microstructures. If the values of these characteristic lengths are considerable, the nonlinear frequency analysis will be essential. Furthermore, the stiffness of the structure will be higher if the values of both length scale parameters increase.
Read full abstract