Pollution from domestic on-site wastewater treatment systems (OWTS) is a significant contaminant pressure in many rural catchments. However, due to their design, and dispersed proliferation, it is difficult to assess their impact. Water testing methodologies employ bacterial culturing methods and chemical analysis which may lose resolution and/or specificity being confounded by diffuse agricultural sources within a rural environment. In this study, we successfully assessed the applicability of Pepper Mild Mottle Virus (PMMoV) as a human faecal source tracker for deficient on-site wastewater treatment systems. The transport of PMMoV was first studied in the effluent of a 30 cm deep soil column which was dosed for 510 days with primary influent from a conventional septic system. The removal of PMMoV through the 30 cm deep soil column was quantified with a 5-day seeding trial employing primary influent mixed with PMMoV sourced from Tabasco pepper product ®. The trial was then carried out at field scale with the seeding solution dosed into an operational percolation trench receiving septic tank effluent which had been instrumented for porewater sampling. Samples were taken at depths of 10 cm, 30 cm, and 50 cm across the length of the trench at distances of 1 m, 7.5 m, and 17.5 m from the inlet of the trench. PMMoV was detected on all days of the trial, with a peak concentration of 1 × 106 found at the rear of the trench on day 2 of the seeding trial. Finally, to assess the effectiveness of PPMoV as a microbial source tracking tool from a water receptor perspective, three rural catchments with high densities of OWTSs were sampled and analysed for hourly variations in biological parameters which included total coliforms, Escherichia coli, PMMoV, and chemical parameters total organic carbon, total nitrogen, and total carbon. PMMoV was detected in all river samples over a 24-hour period, thereby indicating its suitability as a tracer of human wastewater effluent in such environments with multiple diffuse sources.