The disposable paper cups (DPCs) release millions of microplastics (MPs) when used for hot beverages. However, the tissue-specific deposition and toxic effects of MPs and associated toxins remain largely unexplored, especially at daily consumption levels. We administered MPs and associated toxins extracted from leading brand DPCs to pregnant mice, revealing dose-responsive harmful effects on fetal development and maternal physiology. MPs were detected in all 13 examined tissues, with preferred depositions in the fetus, placenta, kidney, spleen, lung, and heart, contributing to impaired phenotypes. Brain tissues had the smallest MPs (90.35 % < 10 µm). A dose-responsive shift in the cecal microbiome from Firmicutes to Bacteroidetes was observed, coupled with enhanced biosynthesis of microbial fatty acids. A moderate consumption of 3.3 cups daily was sufficient to alter the cecal microbiome, global metabolic functions, and immune health, as reflected by tissue-specific transcriptomic analyses in maternal blood, placenta, and mammary glands, leading to neurodegenerative and miscarriage risks. Gene-based benchmark dose framework analysis suggested a safe exposure limit of 2 to 4 cups/day in pregnant mice. Our results highlight tissue-specific accumulation and metabolic and reproductive toxicities in mice at DPC consumption levels presumed non-hazardous, with potential health implications for pregnant women and fetuses.
Read full abstract