The objective of this study was to explore the potential of utilizing Chlorella sorokiniana SU-1 biomass grown on dairy wastewater-amended medium as sustainable feedstock for the biosynthesis of β-carotene and polyhydroxybutyrate (PHB) by Rhodotorula glutinis #100-29. To break down the rigid cell wall, 100 g/L of microalgal biomass was treated with 3% sulfuric acid, followed by detoxification using 5% activated carbon to remove the hydroxymethylfurfural inhibitor. The detoxified microalgal hydrolysate (DMH) was used for flask-scale fermentation, which yielded a maximum biomass production of 9.22 g/L, with PHB and β-carotene concentration of 897 mg/L and 93.62 mg/L, respectively. Upon scaling up to a 5-L fermenter, the biomass concentration increased to 11.2 g/L, while the PHB and β-carotene concentrations rose to 1830 mg/L and 134.2 mg/L. These outcomes indicate that DMH holds promise as sustainable feedstock for the production of PHB and β-carotene by yeast.
Read full abstract