The direct simulation Monte Carlo method in the consistent Boltzmann algorithm model has been developed and expanded for non-ideal gas predictions. The enhanced collision rate factor is determined by considering the excluded molecular volume and shadowing/screening effects based on the Enskog theory. The parameter for the attraction strength is also determined by comparison with the classical thermodynamics theory. Different pressure-driven gas Poiseuille flows in micro- and nanoscale channels are investigated. The van der Waals effect leads to a higher mass flow rate and different friction and heat transfer characteristics on the wall surface, compared to the results in the perfect gas model. The results also show that the van der Waals effect is dependent not only on the pressure but also on the channel size. A higher driving pressure or a smaller channel size will result in a larger van der Waals gas effect.