Past studies indicate daily increases in estrogen across the menstrual cycle protect against binge-eating (BE) phenotypes (e.g. emotional eating), whereas increases in progesterone enhance risk. Two previous studies from our laboratory suggest these associations could be due to differential genomic effects of estrogen and progesterone. However, these prior studies were unable to directly model effects of daily changes in hormones on etiologic risk, instead relying on menstrual cycle phase or mean hormone levels. The current study used newly modified twin models to examine, for the first time, the effects of daily changes in estradiol and progesterone on genetic/environmental influences on emotional eating in our archival twin sample assessed across 45 consecutive days. Participants included 468 female twins from the Michigan State University Twin Registry. Daily emotional eating was assessed with the Dutch Eating Behavior Questionnaire, and daily saliva samples were assayed for ovarian hormone levels. Modified genotype × environment interaction models examined daily changes in genetic/environmental effects across hormone levels. Findings revealed differential effects of daily changes in hormones on etiologic risk, with increasing genetic influences across progesterone levels, and increasing shared environmental influences at the highest estradiol levels. Results were consistent across primary analyses examining all study days and sensitivity analyses within menstrual cycle phases. Findings are significant in being the first to identify changes in etiologic risk for BE symptoms across daily hormone levels and highlighting novel mechanisms (e.g. hormone threshold effects, regulation of conserved genes) that may contribute to the etiology of BE.
Read full abstract