Al2O3 with the desired electrical insulating properties and thermal shock resistivity has been extensively applied in the field of solid oxide fuel cells and oxygen sensors. However, degradation of the insulating Al2O3 layer is an intractable issue in practical applications. In this study, different point defect structures of Al2O3 were realized with the substitutional doping effect of ZrO2 and MgO. The MgO dopant provides positively charged oxygen vacancies, whereas the ZrO2 dopant tends to trigger negatively charged vacancy formation at Al3+ sites. The oxygen vacancy concentration of Al2O3 exhibits the following trend: MgO-doped Al2O3 > Al2O3 > ZrO2-doped Al2O3. Furthermore, the densification morphology, insulating properties, and oxygen vacancy migration of Al2O3 have been confirmed to be largely affected by the extrinsic factors. This study indicates that oxygen vacancy migration depends on the applied electric field at high temperatures. As the voltage and temperature increase, oxygen vacancy migration shows obvious electric-field-dependent characteristics, and its aggregation macroscopically shows hole defects. The defect position of Al2O3 is nonstoichiometric Al2O3-x with poor crystallinity. Therefore, it is believed that the oxygen vacancy migration triggered by the second phase directly determines the insulation performance and causes the degradation of Al2O3 materials.
Read full abstract