Wetland roofs (WRs) are a multi-functional green infrastructure measure to mitigate the negative effects of climate change. The present work advances knowledge in the field of WRs by analyzing the performance of rainwater management, focused on water sufficiency, water quality and cooling potential. Automatic monitoring, covering weather conditions, temperature and the conductivity of WR water, and the amount of outflow into retention tanks, was supported with automated sampling of water for laboratory analysis of BOD5, phosphate phosphorus, suspended solids, electrical conductivity (EC), redox potential (Eh), color and pH. From April to September 2022, a precipitation deficit of 395.45 mm and a negative climatic water balance of 267.91 mm were observed. It was necessary to fill up the system several times in order to maintain water at the assumed level. In most cases, the values of EC observed during the monitoring period were higher than those reported for rainwater. Continuous monitoring of EC in the wetland was a useful tool for the observation of operating activities in the system; however, it was not sufficient for system control. BOD5 values did not exceed 6 mg dm−3 and were lower than reported for urban rainwater retention reservoirs. Suspended solids values did not exceed 27 mg dm−3. Color varied between 0 and 101 PtCo, with the highest values noted in July and the beginning of August. The pH value ranged between 7.28 and 8.24. The Eh varied between 155 and 306 mV, with lower values associated with the filling up of the wetland. Peak values of PO4-P were observed between the end of July and the beginning of September 2022, with a maximum concentration of 232 µg dm−3 utilized by the wetland within one month. Monitoring of the water and air temperature showed a thermal buffering effect of the wetland. The results of the research, conducted during the growing season, allow for better management of rainwater on the roof. However, there is a need to expand the scope of the analyzed water quality parameters. Although there are several limitations to the analysis, the present study partially fills the existing knowledge gap and may generate further interest in this topic among researchers and decision-makers.