BackgroundIn California, climate change and competing water demands are intensifying the desiccation of the Salton Sea, a large land-locked “sea” situated near the southeastern rural US-Mexico border region known as the Imperial Valley. MethodsTo examine the possible effects of living near a saline lake on children's respiratory health, we analyzed the relationship between respiratory health symptoms and ambient PM concentrations among a predominantly Latino/Hispanic cohort of 722 school age children. Guardians completed a survey of their child's wheeze and respiratory health symptoms over the past 12 months, adapted from the International Study of Asthma and Allergies in Childhood (ISAAC). Exposure to dust storm hours (hourly concentrations >150 μg/m3 for PM10) was estimated using a network of regulatory monitors. ResultsBetween 2017 and 2019, children were exposed to 98 to 395 dust event hours annually. We observed disparate effects for dust events and wheeze among children living near the Salton Sea. Every additional 100 dust storm hours per year among children living near the Sea (<11 km) was associated with a 9.5 percentage point increase in wheeze (95% CI: 3.5, 15.4), a 4.6 percentage point increase in bronchitic symptoms (95% CI: 0.18, 10.2) and a 6.7 percentage point increase in sleep disturbance due to wheeze (95% CI: 0.96, 12.4). Similarly, increases in PM10 were also associated with greater reported wheeze and bronchitic symptoms among those living near the Sea, compared to children living ≥11 km from the Sea. There was no association of dust storms or PM10 with wheeze or bronchitic symptoms among the children residing farther from the Sea. ConclusionWe observed stronger adverse impacts of PM10 and dust events on respiratory health among those living closer to the drying Salton Sea, compared to children living farther away. In this community of predominantly low-income residents of color, these impacts raise environmental justice concerns about the effects of the drying Salton Sea on public health.
Read full abstract