We present a self-configured and unified access and metro network architecture, named ARMONIA. The ARMONIA network monitors its status, and dynamically (re-)optimizes its configuration. ARMONIA leverages software defined networking (SDN) and network functions virtualization (NFV) technologies. These technologies enable the access and metro convergence and the joint and efficient control of the optical and the IP equipment used in these different network segments. Network monitoring information is collected and analyzed utilizing machine learning and big data analytics methods. Dynamic algorithms then decide how to adapt and dynamically optimize the unified network. The ARMONIA network enables unprecedented resource efficiency and provides advanced virtualization services, reducing the capital expenditures (CAPEX) and operating expenses (OPEX) and lowering the barriers for the introduction of new services. We demonstrate the benefits of the ARMONIA network in the context of dynamic resource provisioning of network slices. We observe significant spectrum and equipment savings when compared to static overprovisioning.