Autologous fat grafting is widely used in plastic and reconstructive surgery. Liposuction methods play a key role in surgeons' work efficiency, adipocyte viability, graft survival, and outcomes. We investigated the effect of four liposuction methods on adipocyte viability, debris, and surgeons' work efficiency by measuring the active energy expenditure and changes in heart rate. Human lipoaspirate was harvested from patients' removed abdominal flaps using four different liposuction methods, and we counted calories per aspirated volume and surgeons' heart rate. Adipocytes were separated from the lipoaspirate immediately by digestion with 0.1% type I collagenase. After digestion, parts of the cells and debris were measured. Adipocytes were plated in an adipocyte maintenance medium containing Alamar blue reagent. The adipocyte metabolic activity was measured using a spectrophotometer. After evaluating the active energy expenditure and changes in surgeons' heart rate, the ultrasonic-assisted liposuction (UAL) method was determined to be the most ergonomic liposuction device for surgeons. In addition, adipocyte viability was higher in the UAL group than in the other groups, and debris was the lowest in the power-assisted liposuction 1 group (PAL1). Adipocyte viability is crucial for improving fat grafting outcomes. This study revealed that the viability of adipocytes is best preserved using the UAL and PAL1 liposuction methods. The UAL and PAL1 methods caused the least damage to the cells. The UAL method yielded the best results for surgeons' work efficiency.
Read full abstract