Under the background of high permeability, voltage feedforward control may further weaken the stability of grid-connected inverter (GCI) systems and may cause sub-synchronous oscillation in extreme cases. To solve this problem, this paper firstly considers the influence of the frequency coupling effect and voltage feedforward control, and adopts the harmonic linearization method to construct the L-type GCI sequence admittance model with PI (proportional integral) control and PR (proportional resonant) control, respectively. By comparing the sequence admittance characteristics of the GCI under two control strategies, combined with the sequence admittance model and Nyquist criterion, this paper analyzes the influence of voltage feedforward and control parameters on the stability of the GCI under two control strategies. The results show that the stability of GCI under PR control is slightly better than that under PI control. At the same time, the voltage feedforward control does reduce the stability of the GCI system under the two control strategies. Finally, the accuracy of the theoretical analysis is verified by simulation and experiment.
Read full abstract