Previous article Next article On Some Functional Differential Equations: Existence of Solutions and Difference ApproximationsR. J. ThompsonR. J. Thompsonhttps://doi.org/10.1137/0705038PDFBibTexSections ToolsAdd to favoritesExport CitationTrack CitationsEmail SectionsAbout[1] L. Bobisud, On a class of partial differential equations with time lag, J. Math. Anal. Appl., 18 (1967), 115–128 MR0206479 0148.10901 CrossrefISIGoogle Scholar[2] Sherwood C. Chu and , J. B. Diaz, Remarks on a generalization of Banach's principle of contraction mappings, J. Math. Anal. Appl., 11 (1965), 440–446 10.1016/0022-247X(65)90096-X MR0184218 0129.38301 CrossrefISIGoogle Scholar[3] Rodney D. Driver, Existence and continuous dependence of solutions of a neutral functional-differential equation, Arch. Rational Mech. Anal., 19 (1965), 149–166 MR0179406 0148.05703 CrossrefGoogle Scholar[4] L. È. Èl'sgol'c, Introduction to the theory of differential equations with deviating arguments, Translated from the Russian by Robert J. McLaughlin, Holden-Day Inc., San Francisco, Calif., 1966vi+109 MR0192154 Google Scholar[5] Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966xix+592 MR0203473 0148.12601 CrossrefGoogle Scholar[6] P. D. Lax and , R. D. Richtmyer, Survey of the stability of linear finite difference equations, Comm. Pure Appl. Math., 9 (1956), 267–293 MR0079204 0072.08903 CrossrefISIGoogle Scholar[7] Robert D. Richtmyer, Difference methods for initial-value problems, Interscience tracts in pure and applied mathematics. Iract 4, Interscience Publishers, Inc., New. York, 1957xii+238 MR0093918 0079.33702 Google Scholar[8] Robert J. Thompson, Difference approximations for inhomogeneous and quasi-linear equations, J. Soc. Indust. Appl. Math., 12 (1964), 189–199 10.1137/0112018 MR0162369 0124.07203 LinkISIGoogle Scholar Previous article Next article FiguresRelatedReferencesCited byDetails A method of lines for a nonlinear abstract functional evolution equation1 January 1984 | Transactions of the American Mathematical Society, Vol. 286, No. 1 Cross Ref Existence of solutions in a closed set for delay differential equations in Banach spacesNonlinear Analysis: Theory, Methods & Applications, Vol. 2, No. 1 Cross Ref Finite Difference Approximations for a Class of Semilinear Volterra Evolution ProblemsLucio Tavernini14 July 2006 | SIAM Journal on Numerical Analysis, Vol. 14, No. 5AbstractPDF (1604 KB)The linear quadratic optimal control problem for hereditary differential systems: Theory and numerical solutionApplied Mathematics & Optimization, Vol. 3, No. 2-3 Cross Ref Autonomous nonlinear functional differential equations and nonlinear semigroupsJournal of Mathematical Analysis and Applications, Vol. 46, No. 1 Cross Ref Difference approximations for some functional differential equations23 August 2006 Cross Ref The Numerical Solution of Volterra Functional Differential Equations by Euler’s MethodColin W. Cryer and Lucio Tavernini1 August 2006 | SIAM Journal on Numerical Analysis, Vol. 9, No. 1AbstractPDF (1936 KB)NUMERICAL METHODS FOR FUNCTIONAL DIFFERENTIAL EQUATIONS Cross Ref Volume 5, Issue 3| 1968SIAM Journal on Numerical Analysis History Submitted:05 January 1968Published online:14 July 2006 InformationCopyright © 1968 Society for Industrial and Applied MathematicsPDF Download Article & Publication DataArticle DOI:10.1137/0705038Article page range:pp. 475-487ISSN (print):0036-1429ISSN (online):1095-7170Publisher:Society for Industrial and Applied Mathematics
Read full abstract