A three-wavelength photoelasticity method is proposed to simplify the optical setup and speed up data acquisition. By recording six intensity images with circularly polarized illuminations of three close wavelengths, the phase retardation and corresponding inner stress can be computed accurately with a correspondingly developed computational algorithm. Since the mechanical rotations of wave plates and polarizers required by classic photoelasticity techniques are avoided, the data acquisition of this proposed method is very speedy, and measurement of a dynamic sample can be achieved with a very simple and compact optical setup. Besides theoretical analyses, numerical and experimental evidences are also used to confirm the feasibility of this suggested three-wavelength digital photoelasticity method.