Prenylated flavonoids are the primary modification of flavonoids and exhibit a diverse range of physiological activities. In this study, a co-immobilization of two-enzyme cascade was developed to regenerate dimethylallyl diphosphate (DMAPP). Shigella flexneri promiscuous kinase (SfPK) and Methanolobus tindarius isopentenyl phosphate kinase (MtIPK) were immobilized onto carboxymethyl cellulose magnetic nanoparticles (CMN) with a maximum load of 0.35 mg/mg and 0.28 mg/mg, respectively. The optimal activity of CMN-SfPK and CMN-MtIPK were at pH 9.5 and 55°C, and pH 7.0 and 35 °C, respectively. CMN-SfPK and CMN-MtIPK exhibited superior catalytic efficiency compared to free enzymes. CMN-SfPK was coupled with CMN-MtIPK to develop an efficient DMAPP regeneration system from prenol. Subsequently, SfPK, MtIPK and Aspergillus fumigatus prenyltransferase (AfPT) were co-immobilized on CMN to form CMN-SfPK-MtIPK-AfPT (CSMA) according to the optimal ratio. The 3’-C-prenylnaringenin production rate in CSMA reached 0.37 mmol/L/h, which was 1.85 times that of single-immobilized enzymes. Finally, the total production and production rate of 3’-C-prenylnaringenin in CSMA reached 2.55 mM and 0.255 mmol/L/h with 10 cycles. Therefore, the method described herein for efficient production of DMAPP and 3’-C-prenylnaringenin by using co-immobilized enzymes can be widely used for the prenylation of flavonoids.
Read full abstract