Since being proposed by John Bockris in 1970, hydrogen economy has emerged as a very promising alternative to the current hydrocarbon economy. Access to reliable and affordable hydrogen economy, however, requires cost-effective and highly efficient electrocatalytic materials that replace noble metals (e.g., Pt, Ir, Ru) to negotiate electrode processes such as oxygen evolution reaction (OER), hydrogen evolution reaction (HER), and oxygen reduction reaction (ORR). Although substantial advances in the development of inexpensive catalysts, successful deployment of these materials in fuel cells and electrolyzers will depend on their improved activity and robustness. Recent research has demonstrated that the nanostructuring of Earth-abundant minerals provides access to newly advanced energy materials, particularly for nanostructured pyrites, which are attracting great interest. Crystalline pyrites commonly contain the characteristic dianion units and have cations occurring in octahedral coordination-whose generalized formula is MX2, where M can be transition metal of groups 8-12 and X is a chalcogen. The diversity of pyrites that are accessible and their versatile and tunable properties make them attractive for a wide range of applications from photovoltaics to energy storage and electrocatalysis. Pyrite-type structures can be further extended to their ternary analogues, for example, CoAsS (cobaltite), NiAsS (gersdorffite), NiSbS (ullmannite), CoPS, and many others. Moreover, improved properties of pyrites can be realized through grafting them with promoter objects (e.g., metal oxides, metal chalcogenides, noble metals, and carbons), which bring favorable interfaces and structural and electronic modulations, thus leading to performance gains. In recent years, research on the synthesis of pyrite nanomaterials and on related structure understanding has dramatically advanced their applications, which offers new perspectives in the search for efficient and robust electrocatalysts, yet a focused review that concentrates the critical developments is still missing. In this Account, we describe our recent progress on the discoveries and applications of nanostructured pyrite-type materials in the area of electrocatalysis. We first briefly highlight some interesting properties of pyrite-type materials and why they are attractive for modern electrocatalysis. Some recent advances on their synthesis that allows access to highly nanostructured pyrite-type materials are reviewed, along with the grafting of resultant pyrites with foreign materials (e.g., metal oxides, metal chalcogenides, noble metals, and carbons) to enable improved catalytic performances. We finally spotlight the exciting examples where pyrite nanostructures were used as efficient electrocatalysts to drive the OER, HER, and methanol-tolerant ORR. It is reasonable to assume that, with significant efforts and focus, the next few years will bring new advances on the pyrites and other minerals for electrocatalysis.
Read full abstract