In anodic electrosynthesis, cation radicals are often key intermediates that can be highly susceptible to nucleophilic attack and/or deprotonation, with the selectivity of competing pathways dictating product yield. In this work, we computationally investigate the role of methanol in alcohol trapping of enol ether cation radicals for which substantial modulation of the reaction yield by the solvent environment was previously observed. Reaction free energies computed for intramolecular coupling unequivocally demonstrate that the key intramolecular alcohol attack on the oxidized enol ether group is catalyzed by methanol, proceeding through overall second-order kinetics. Methanol complexation with the formed oxonium ion group gives rise to a "Zundel-like", shared proton conformation, providing a critical driving force for the intramolecular alcohol attack. Free energies computed for methanol solvent attack of enol ether cation radicals demonstrate an analogous mechanism and overall third-order kinetics, due to similar complexation from a secondary methanol molecule to form the "Zundel-like", shared proton conformation. As catalyzed by methanol, both intramolecular alcohol attack and methanol attack on the oxidized enol ether group are barrierless or low-barrier reactions, with kinetic competition dictated by the conformational free energy profile of the cation radical substrate and the difference in reaction rate orders.
Read full abstract