Background: Acute Kidney Injury (AKI) is a condition that affects a significant proportion of acutely unwell patients and is associated with a high mortality rate. Patients undergoing haemopoietic stem cell transplantation (HSCT) are in an extremely high group for AKI. Identifying a biomarker or panel of markers that can reliably identify at-risk individuals undergoing HSCT can potentially impact management and outcomes. Early identification of AKI can reduce its severity and improve prognosis. We evaluated the urinary Liver type fatty acid binding protein (L-FABP), a tubular stress and injury biomarker both as an ELISA and a point of care (POC) assay for AKI detection in HSCT. Methods: 85 patients that had undergone autologous and allogenic HSCT (35 and 50, respectively) had urinary L-FABP (uL-FABP) measured by means of a quantitative ELISA and a semi-quantitative POC at baseline, day 0 and 7 post-transplantation. Serum creatinine (SCr) was also measured at the same time. Patients were followed up for 30 days for the occurrence of AKI and up to 18 months for mortality. The sensitivity and specificity of uL-FABP as an AKI biomarker were evaluated and compared to the performance of sCr using ROC curve analysis and logistic regression. Results: 39% of participants developed AKI within 1 month of their transplantation. The incidence of AKI was higher in the allogenic group than in the autologous HTSC group (57% vs. 26%, p = 0.008) with the median time to AKI being 25 [range 9-30] days. This group was younger (median age 59 vs. 63, p < 0.001) with a lower percentage of multiple myeloma as the primary diagnosis (6% vs. 88%, p < 0.001). The median time to AKI diagnosis was 25 [range 9-30] days. uL-FABP (mcg/gCr) at baseline, day of transplant and on the 7th day post-transplant were 1.61, 5.39 and 10.27, respectively, for the allogenic group and 0.58, 4.36 and 5.14 for the autologous group. Both SCr and uL-FABP levels rose from baseline to day 7 post-transplantation, while the AUC for predicting AKI for baseline, day 0 and day 7 post-transplant was 0.54, 0.59 and 0.62 for SCr and for 0.49, 0.43 and 0.49 uL-FABP, respectively. Univariate logistic regression showed the risk of AKI to be increased in patients with allogenic HSCT (p = 0.004, 95%CI [0.1; 0.65]) and in those with impaired renal function at baseline (p = 0.01, 95%CI [0.02, 0.54]). The risk of AKI was also significantly associated with SCr levels on day 7 post-transplant (p = 0.03, 95%CI [1; 1.03]). Multivariate logistic regression showed the type of HSCT to be the strongest predictor of AKI at all time points, while SCr levels at days 0 and 7 also correlated with increased risk in the model that included uL-FABP levels at the corresponding time points. The POC device for uL-FABP measurement correlated with ELISA (p < 0.001, Spearman 'correlation' = 0.54) Conclusions: The urinary biomarker uL-FABP did not demonstrate an independent predictive value in the detection of AKI at all stages. The most powerful risk predictor of AKI in this setting appears to be allograft recipients and baseline renal impairment, highlighting the importance of clinical risk stratification. Urinary L-FAPB as a POC biomarker was comparable to ELISA, which provides an opportunity for simple and rapid testing. However, the utility of LFABP in AKI is unclear and needs further exploration. Whether screening through rapid testing of uL-FABP can prevent or reduce AKI severity is unknown and merits further studies.