Mosquitoes are a formidable reservoir of viruses and important vectors of zoonotic pathogens. Blood-fed mosquitoes have been utilized to determine host infection status, overcoming the difficulties associated with sampling from human and animal populations. Comprehensive surveillance of potential pathogens at the interface of humans, animals, and the environment is currently an accredited method to provide an early warning of emerging or re-emerging infectious diseases and to proactively respond to them. Herein we performed comprehensive sampling of mosquitoes from seven habitats (residential areas, hospital, airplane, harbor, zoo, domestic sheds, and forest park) across five cities in Guangdong Province, China. Our aim was to characterize the viral communities and blood feeding patterns at the human-animal-environment interface and analyze the potential risk of cross-species transmission using meta-transcriptomic sequencing. 1898 female adult mosquitoes were collected, including 1062 Aedes and 836 Culex mosquitoes, of which approximately 12% (n = 226) were satiated with blood. Consequently, 101 putative viruses were identified, which included DNA and RNA viruses, and positive-stranded RNA viruses (+ssRNA) were the most abundant. According to viral diversity analysis, the composition of the viral structure was highly dependent on host species, and Culex mosquitoes showed richer viral diversity than Aedes mosquitoes. Although the virome of mosquitoes from different sampling habitats showed an overlap of 39.6%, multiple viruses were specific to certain habitats, particularly at the human-animal interface. Blood meal analysis found four mammals and one bird bloodmeal source, including humans, dogs, cats, poultry, and rats. Further, the blood feeding patterns of mosquitoes were found to be habitat dependent, and mosquitoes at the human-animal interface and from forests had a wider choice of hosts, including humans, domesticated animals, and wildlife, which in turn considerably increases the risk of spillover of potential zoonotic pathogens. To summarize, we are the first to investigate the virome of mosquitoes from multiple interfaces based on the One Health concept. The characteristics of viral community and blood feeding patterns of mosquitoes at the human-animal-environment interface were determined. Our findings should support surveillance activities to identify known and potential pathogens that are pathogenic to vertebrates.