Risk factors vary in terms of the pattern of lung cancer metastasis and specific metastatic organs. In this study, we retrospectively analyzed the clinical risk factors of tumor metastasis in lung cancer patients and used second‐generation gene sequencing to characterize relevant gene mutations. The risk factors of different metastatic sites of real‐world lung cancer were explored to find the differentially expressed genes and risk factors in different metastatic organs, which laid a foundation for further study on the metastasis patterns and mechanisms of lung cancer. The clinical risk factors of tumor metastasis in 137 lung cancer patients who attended our department from May 2017 to March 2019 were retrospectively analyzed and grouped based on bone metastasis, brain metastasis, other distant metastasis, and no metastasis. Single‐ or multi‐factor logistic regression analysis was performed to analyze the effect of neutrophil/lymphocyte ratio/platelet/lymphocyte ratio/lymphocyte to monocyte ratio on platelets (PLTs) and bone metastasis by combining PLT values, age, pathology type, gender, and smoking history. Based on the presence or absence of bone metastasis, distal metastasis, and PLT values of lung cancer, 39 tissue specimens of primary lung cancer were taken for 773 gene grouping and gene mutation characterization. The tumor mutation load, gene copy number instability, microsatellite instability, and tumor heterogeneity among different groups were analyzed. Age and PLT level were independent risk factors for bone metastasis and distal metastasis, but not for brain metastasis. The RB1 gene was mutated during bone metastasis, and tumor heterogeneity was less in the elevated PLT group. PLT values were an independent risk factor for distant metastases from lung cancer other than the brain. Age has a significant effect on bone metastasis formation. RB1 gene mutation was significantly associated with bone metastasis.