The effect of vitamin K2 (menaquinone-7) on bone metabolism in the femoral-metaphyseal tissues of normal and skeletal-unloaded rats was investigated. Skeletal unloading was designed using a model of hindlimb suspension; the rats were fed for the 4 days of unloading. The metaphyseal tissues obtained from normal and skeletal-unloaded rats were cultured for 48 h in medium containing either vehicle or vitamin K2 (10(-6) and 10(-5) M). The presence of vitamin K2 (10(-5) M) caused a significant increase in alkaline phosphatase activity and calcium content in the metaphyseal tissues from normal rats. Such an effect was not seen in the bone tissues from skeletal-unloaded rats. Additionally, the presence of zinc sulfate (10(-5) M) in effective concentration produced a significant increase in alkaline phosphatase activity and calcium content in the metaphyseal tissues from normal and skeletal-unloaded rats. In the presence of vitamin K2 (10(-5) M), the stimulatory effect of zinc sulfate on bone calcium content was appreciably enhanced; although this effect was completely abolished by cycloheximide (10(-6) M), an inhibitor of protein synthesis. This study demonstrates that the effect of vitamin K2 (menaquinone-7) on trabecular bone calcification in rats with skeletal unloading-induced osteopenia is enhanced by zinc in vitro. The enhancement with zinc may be based on a newly synthesized protein in the bone tissues.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access