While the majority of knots are made from the metal-template approach, the use of entangled, constrained knotted loops to modulate the coordination of the metal ions remains inadequately elucidated. Here, we report on the coordination chemistry of a 140-atom-long cinquefoil knotted strand comprising five tridentate and five bidentate chelating vacancies. The knotted loop is prepared through the self-assembly of asymmetric "3 + 2" dentate ligands with copper(II) ions that favor five-coordination geometry. The formation of the copper(II) pentameric helicate is confirmed by X-ray crystallography, while the corresponding copper(II) knot is characterized by XPS and LR-/HR ESI-MS. Upon removal of the original template, the knotted ligand facilitates zinc(II) ions, which typically form four- or six-coordination geometries, resulting in the formation of an otherwise inaccessible zinc(II) metallic knot with coordinatively unsaturated metal centers. The coordination numbers and geometries of the zinc(II) cations are undoubtedly determined by X-ray crystallography. Despite the kinetically labile nature and high reversibility of the zinc(II) complex preventing the detection of 5-to-6 coordination equilibrium in solution, the effects on metal-ion coordination induced by knotting hold promise for fine-tuning the coordination of metal complexes.
Read full abstract