This paper introduces a metal rubber composite gear for gear vibration reduction. A comprehensive structural design calculation program is developed for the metal rubber composite gear pair. The design incorporates a gap between the tooth ring and the hub to accommodate thermal expansion and contraction, ensuring smooth transmission without jamming or seizing. The design process takes into consideration the compression and damping properties of the metal rubber material. A significant variable in the design process is the relative density of the metal rubber material. It is utilized to calculate the torsional stiffness, starting friction torque, and dynamic performance of the composite gear pair. To guide and optimize the design process, a nine-degree-of-freedom dynamic model is employed for dynamic analysis. The vibration reduction effect of the metal rubber composite gear is validated through numerical simulations and experimental testing. The results confirm the efficacy of the gear in reducing vibrations. This paper provides valuable insights and guidance for future designs focused on gear vibration reduction, paving the way for further advancements in this field.
Read full abstract