Here, we report on the successful demonstration and application of carbonate (CO32-) ion-selective amperometric/voltammetric nanoprobes based on facilitated ion transfer (IT) at the nanoscale interface between two immiscible electrolyte solutions. This electrochemical study reveals critical factors to govern CO32--selective nanoprobes using broadly available Simon-type ionophores forming a covalent bond with CO32-, i.e., slow dissolution of lipophilic ionophores in the organic phase, activation of hydrated ionophores, peculiar solubility of a hydrated ion-ionophore complex near the interface, and cleanness at the nanoscale interface. These factors are experimentally confirmed by nanopipet voltammetry, where a facilitated CO32- IT is studied with a nanopipet filled with an organic phase containing the trifluoroacetophenone derivative CO32-ionophore (CO32-ionophore VII) by voltammetrically and amperometrically sensing CO32- in water. Theoretical assessments of reproducible voltammetric data confirm that the dynamics of CO32- ionophore VII-facilitated ITs (FITs) follows the one-step electrochemical (E) mechanism controlled by both water-finger formation/dissociation and ion-ionophore complexation/dissociation during interfacial ITs. The yielded rate constant, k0 = 0.048 cm/s, is very similar to the reported values of other FIT reactions using ionophores forming non-covalent bonds with ions, implying that a weak binding between CO32- ion-ionophore enables us to observe FITs by fast nanopipet voltammetry regardless of the nature of bondings between the ion and ionophore. The analytical utility of CO32--selective amperometric nanoprobes is further demonstrated by measuring the CO32- concentration produced by metal-reducing bacteria Shewanella oneidensis MR-1 as a result of organic fuel oxidation in bacterial growth media in the presence of various interferents such as H2PO4-, Cl-, and SO42-.