This review introduces transition metal phosphide nanoparticle catalysts as highly efficient and reusable heterogeneous catalysts for various reductive molecular transformations. These transformations include the hydrogenation of nitriles to primary amines, reductive amination of carbonyl compounds, and biomass conversion, specifically, the aqueous hydrogenation reaction of mono- and disaccharides to sugar alcohols. Unlike traditional air-unstable non-precious metal catalysts, these are stable in air, eliminating the need for strict anaerobic conditions or pre-reduction. Moreover, when combined with supports, metal phosphides exhibit significantly enhanced activity, demonstrating high activity, selectivity, and durability in these hydrogenation reactions.
Read full abstract