MXenes, a prominent category of 2D materials consisting of transition metal carbides, nitrides, and carbonitrides, have garnered significant interest since the introduction of Ti3C2Tx. This fascination arises from their exceptional attributes like their high special surface area, superb electrical conductivity, and remarkable mechanical strength. These qualities have established MXenes as top materials for electrocatalysis, a critical component of clean energy conversion technologies. Crucially, MXenes serve as the foundation for the next generation of electrocatalysts, aiming at high activity, selectivity, and sustainability.In electrocatalysis, MXene composites enhance the performance of various reactions, such as water splitting and fuel cell operations. When combined with metals, metal oxides, or other conductive materials, MXenes exhibit improved electrical conductivity and catalytic activity. These composites can achieve higher efficiency and selectivity in electrochemical reactions, making them suitable for sustainable energy applications. MXene composites also play an significant role in the development of supercapacitors, which are energy storage devices characterized by rapid charge and discharge capabilities. The high special surface area and excellent conductivity of MXenes increase charge storage and improve energy and power density. When MXene composites are mixed with materials such as polymers or other nanomaterials, they can further optimize these properties, leading to increased performance and longevity. Also in battery technology, MXene composites are used to improve the performance of anodes and cathodes. Their high capacity for ion storage and conduction contributes to higher energy density and faster charge/discharge rates. By combining MXenes with other materials, researchers are able to create advanced battery systems that overcome traditional limitations, resulting in batteries that are more efficient, durable, and capable of delivering higher performance. In this study MXene–Carbon composites, MXene-LDH composites, MXene-Polymer composites, MXene-MOF composites are reviewed and discussed. The versatility of MXenes is further enhanced when they are composited with various other materials. Such compositions allow for tailoring their innate properties, enabling a widespread range of applications. In terms of environmental implications, MXenes and their composites boast excellent reducibility, conductivity, and biocompatibility, making them very appropriate for use in environmental clean-up and protection applications.
Read full abstract