The human red blood cell (RBC) metabolism is investigated by calculating steady state fluxes using constraint-based stoichiometric modeling approaches. For the normal RBC metabolism, flux balance analysis (FBA) is performed via optimization of various alternative objective functions, and the maximization of production of ATP and NADPH is found to be the primary objective of the RBC metabolism. FBA and two novel approaches, minimization of metabolic adjustment (MOMA) and regulatory on–off minimization (ROOM), which can describe the behavior of the metabolic networks in case of enzymopathies, are applied to observe the relative changes in the flux distribution of the deficient network. The deficiencies in several enzymes in RBC metabolism are investigated and the flux distributions are compared with the non-deficient FBA distribution to elucidate the metabolic changes in response to enzymopathies. It is found that the metabolism is mostly affected by the glucose-6-phosphate dehydrogenase (G6PDH) and phosphoglycerate kinase (PGK) enzymopathies, whereas the effects of the deficiency in DPGM on the metabolism are negligible. These stoichiometric modeling results are found to be in accordance with the experimental findings in the literature related to metabolic behavior of the human red blood cells, showing that human RBC metabolism can be modeled stoichiometrically.
Read full abstract