ABSTRACT The Upper Cretaceous (Turonian?) Middendorf Formation is a sand-rich stratigraphic unit of fluvial origin that forms a large aquifer in the U.S. Atlantic Coastal Plain. In Chesterfield County (South Carolina), which is the site of the type locality, the formation ranges in thickness from 66.5 to > 119.7 meters. The base of the formation is an unconformity above Paleozoic metasiltstone, and the upper contact is an unconformity above which lies sand of the Quaternary Pinehurst Formation. Outcrops display the following five facies assemblages: 1) sandstone to conglomeratic sandstone (fluvial bar and channel deposits), 2) beds of alternating laminae of sandstone and mudstone (fluvial overbank or floodplain deposits), 3) ≥ 1 m-thick beds of clay (swamp deposits, floodplain deposits, and/or sediment that accumulated in abandoned fluvial channels), 4) 0.2–0.5 m-thick planar to slightly undulatory beds of framework-supported sandstone with a mud matrix (traction-dominated current deposits at the top of fluvial bars, upper-flow-regime bedform deposits in subsidiary fluvial channels, or coarse-grained overbank deposits), and 5) sandstone to conglomeratic sandstone cemented by iron (interpreted as fluvial bar and channel deposits, with the iron cement being a diagenetic “groundwater ferricrete” that formed via the circulation of shallow groundwater and the oxidation of iron-bearing minerals). Kaolinite in various forms is pervasive throughout the formation and is interpreted as an early diagenetic phenomenon that formed by prolonged postdepositional weathering and flushing by meteoric water under a warm and humid paleoclimate. The fluvial system that formed the Middendorf Formation prograded into the area from the west or northwest from uplifted margins of Mesozoic rift basins and/or the Appalachian Mountains. This progradation was a response to a base-level fall and the sediment accumulated during base-level lowstand and subsequent early transgression. In Chesterfield County, the Middendorf Formation can be subdivided into three fining-upward sequences. Each sequence consists predominantly of medium to coarse sand with a greater abundance of gravel in the lower part of the sequence and a greater abundance of clay and silt beds in the upper part. Each sequence is interpreted as either a response to autogenic processes or a response to allogenic sea-level changes, specifically a higher-order (higher-frequency) progression from relative lowstand conditions to early transgression whereby coarse sand and gravel (e.g., fluvial bar and channel deposits) were preserved during initial lowstand conditions and a greater proportion of mud and finer-grained sand (floodplain deposits) were preserved during subsequent early transgression. The Middendorf Formation is correlative with several other kaolinite-rich fluvial sandstones in North America including the Raritan Formation in New Jersey, the Tuscaloosa Formation of the eastern Gulf of Mexico (Alabama, Mississippi, Louisiana), the Woodbine Formation of the central Gulf of Mexico (Texas), and the Frontier Formation of Wyoming. The accumulation and preservation of these formations occurred in response to a Turonian eustatic sea-level fall and subsequent transgression, and the early diagenetic kaolinite in these formations is attributed to similar warm and humid paleoclimate conditions.