Bioventing is an established technique extensively employed in the remediation of soil contaminated with petroleum hydrocarbons. In this study, the objective was to develop an improved foundational bioventing model that characterizes gas flow in vadose zones where aqueous and non-aqueous phase liquid (NAPL) are present and immobile, accounting for interphase mass transfer and first order biodegradation kinetics. By incorporating a correlation for the biodegradation rate constant, which is a function of soil properties including initial population of petroleum degrader microorganisms in soil, sand content, clay content, water content, and soil organic matter content, this model offers the ability to integrate a specific biodegradation rate constant tailored to the soil properties for each site. The governing equations were solved using the finite volume method in OpenFOAM employing the “porousMultiphaseFoam v2107” (PMF) toolbox. The equation describing gas flow in unsaturated soil was solved using a mixed pressure-saturation method, where calculated values were employed to solve the component transport equations. Calibration was done against a set of experimental data for a meso-scale reactor considering contaminant volatilization rate as the pre-calibration parameter and the mass transfer coefficient between aqueous and NAPL phase as the main calibration parameter. The calibrated model then was validated by simulating a large-scale reactor. The modelling results showed an error of 2.9% for calibrated case and 4.7% error for validation case which present the fitness to the experimental data, proving that the enhanced bioventing model holds the potential to improve predictions of bioventing and facilitate the development of efficient strategies to remediate soil contaminated with petroleum hydrocarbons.