To keep up with the development of contaminants in the water supply, it is required to create new adsorbents or improve current ones. The adsorption capacity of AlPO4 electrocoagulated with varying current intensities was examined. AlPO4 was produced by electrolysis in a NaCl solution using aluminum electrodes and a 0.1M phosphate buffer at varying current intensities. Current efficiency was enhanced. X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy were used to analyze the adsorbents (FTIR). The specific surface area was estimated by the quantity of methylene blue adsorbed by particles in an aqueous solution. Numerous operating factors must be addressed, including pH, starting concentration, adsorbent dose, and contact duration. The electrostatic interaction between positively charged MB molecules and negatively charged adsorbents drives adsorption at alkaline pH. When describing equilibrium adsorption, the Langmuir model is more accurate. Modeling using an adsorption isotherm may further improve the predicted specific surface area. At 0.2 amperes, the observed specific surface area was 2.86 m2/g.