Rational conditions for the activation of coal of a high stage of metamorphism (anthracite) have been determined, which allow the development of a nanoporous structure. Obtained activate carbon with nanoporous structure can be use for the treatment of natural and waste waters have been carried out. The structurally sorptive characteristics and granulometric size composition of obtained samples were determined. It was established that in order to obtain a sorbent with specified properties, it is necessary to introduce oxygen into the reacting mixture at the second stage of anthracite activation and control the activation time. The activation in the first stage was carried out with steam at a temperature of 750–800 °C, and in the second stage – with steam in the presence of air oxygen at 280–300 °C. The rational content of oxygen in the activating mixture is in the range of 2.7–4.4 %, while the specific surface area of activated carbon increases, which corresponds to nano-sized pores and, accordingly, the volume of the adsorption space of coal. The process led to the development of mesoporosity ~ 0.2–0.3 cm3/g, after which the microporous sample of activated carbon was impregnated with a surfactant solution. Thus, the rational conditions of activation are the duration of the process of 1.5 hours in the presence of 4.4 % oxygen in the activating mixture. It is shown that the largest values of the total specific surface area and the specific surface area of mesopores are achieved when using ionic surfactants with alkyl chain length n = 10–16 as modifiers. In particular, the use of sodium dodecyl sulfate СН3(СН2)11SO3Na as a modifier allows to obtain the largest value of the total surface Stot 1030 m2/g and the surface of mesopores Smе 334 m2/g. It was established that the activation of modified samples of activated carbon leads to a decrease in the size of granules.The content of fractions with a size of 1.0–2.0 mm and 0.5–1.0 mm is 80–85 %, which are rational for use for water purification from organic compounds.