Ungulate herbivory poses global challenges to forest regeneration. Deer, in combination with other biotic and abiotic factors, threaten to shift forest composition away from palatable hardwoods, such as oaks (Quercus spp.), and cause regeneration failure in some cases. Many studies have assessed methods to reduce or manage browse, but comprehensive analyses of the relative effectiveness of these techniques among published experiments are lacking. We synthesized the literature describing the results of methods to reduce deer browsing impacts, and assessed the effectiveness of deer browse management methods in controlling damage to hardwood forest regeneration. Specifically, we systematically analyzed results from 99 studies that used repellents, physical barriers, lethal population control, timber harvests, facilitation by neighboring plants, or fertilizer to affect browse, survival, or height growth of hardwood seedlings. Across studies, browse was reduced (mean effect size and confidence intervals) with the following: Fencing −3.17 (CI: −4.00–−1.31), shelters −1.28 (CI: −2.02–−0.67), cages −1.48 (CI: −3.14–−0.62), facilitation from neighboring plants −0.58 (CI: −1.11–−0.13), repellents −0.45 (CI: −0.56–−0.21), hunting −0.99 (CI: −1.51–−0.26). These methods each had positive effects on seedling height growth (except for repellents), and cages, timber harvests, fences, and mesh sleeves had positive effects on survival. Logging slash had no effect on browse incidence (−0.05, CI: −0.97–0.19). Fertilizer applied during seedling establishment increased browse (0.13, CI: 0.11–0.21), and did not affect height growth. We conclude that fences or other physical barriers best control for the effects of deer, but facilitation by surrounding vegetation, logging slash, hunting, habitat management through timber harvest, and certain repellents may also be moderately effective. Discrepancies between browse effectiveness and relative costs suggest that economic analyses should be developed to help to guide prescriptions for management.
Read full abstract