Vicariance is the simplest explanation for divergence between sister lineages separated by a potential barrier, and the northern Andes would seem to provide an ideal example of a vicariant driver of divergence. We evaluated the potential role of the uplift of the Eastern Cordillera (EC) of the Colombian Andes and the Mérida Andes (MA) of Venezuela as drivers of vicariance between lowland populations co-distributed on both flanks. We synthesized published geological data and provided a new reconstruction showing that the EC-MA grew from north to south, reaching significant heights and separating drainages and changing sediment composition by 38–33 million years ago (Ma). A few lowland passes across the EC-MA may have reached their current heights (~1,900 m a.s.l.) at 3–5 Ma. We created a comparative phylogeographic data set for 37 lineages of lowland tetrapods. Based on molecular phylogenetic analyses, most divergences between sister populations or species across the EC-MA occurred during Pliocene and the Quaternary and a few during the latest Miocene, and coalescent simulations rejected synchronous divergence for most groups. Divergence times were on average slightly but significantly more recent in homeotherms relative to poikilotherms. Because divergence ages are mostly too recent relative to the geological history and too asynchronous relative to each other, divergence across the northern Andes may be better explained by organism-environment interactions concomitant with climate oscillations during the Pleistocene, and/or dispersal across portals through the Andes.