Many countries have experienced increases in invasive meningococcal disease (IMD) due to a serogroup W Neisseria meningitidis (MenW) strain of the multilocus sequence type (ST)-11 clonal complex (CC). MenW ST-11 was first reported in Ontario, Canada, in 2014. By 2016, this strain caused IMD in five provinces and was responsible for 18.8% of the IMD cases in Canada. To provide an update on invasive MenW disease in Canada including the strain characteristics, specimen source of isolates, age, sex and geographic distribution of cases. N. meningitidis from culture-positive IMD cases are routinely submitted to the National Microbiology Laboratory (NML) for serogroup, serotype, serosubtype and sequence type analysis. The data from January 1, 2016 to December 31, 2018 were analyzed by calculating the proportion of IMD cases caused by MenW compared with other serogroups. In addition, trends based on age, sex and geographic distribution of cases and specimen source of isolates were analyzed based on information on specimen requisition forms. Over the 3-year period, 292 individual IMD case isolates were analyzed. The percentage of IMD case isolates typed as MenW more than doubled from 19% (n=15) to 44% (n=51) in 2018 when MenW became the most common serogroup, exceeded the number of MenB, MenC or MenY. In total, 93 MenW case isolates were identified, 91% (n=85) belonged to the ST-11 CC. The increase in MenW affected all age groups (but was most common in those older than 60) and both sexes, and occurred across the country but most prevalent in western Canada. The most common specimen source was blood. In 2018, MenW was the most common serogroup for isolates received by the NML from culture-positive IMD cases in Canada. Over 90% of the MenW serogroup isolates belonged to the ST-11 CC. The quadrivalent ACWY meningococcal conjugate vaccine protects against IMD caused by strains in the A, C, W or Y serogroups and therefore may protect against IMD caused by the new MenW ST-11 strain; however, more research is needed. The emergence of variant strains highlight the importance of strain characterization in IMD surveillance and research.
Read full abstract