In this work, a novel memristive Chua’s oscillator circuit is presented. In the proposed circuit, a linear negative resistor, which is parallel coupled with a first-order memristive diode bridge, is used instead of the well-known Chua’s diode. Following this, an extensive theoretical and dynamical analysis of the circuit is conducted. This involves numerical computations of the system’s phase portraits, bifurcation diagrams, Lyapunov exponents, and continuation diagrams. A comprehensive comparison is made between the numerical simulations and the circuit’s simulations performed in Multisim. The analysis reveals a range of intriguing phenomena, including the route to chaos through a period-doubling sequence, antimonotonicity, and coexisting attractors, all of which are corroborated by the circuit’s simulation in Multisim.