Owing to the escalating demand for environmentally friendly commodities, lithium-ion batteries (LIBs) are gaining extensive recognition as a viable means of energy storage and conversion. LIBs comprise cathode and anode electrodes, electrolytes, and separators. Notably, the separator, a crucial and indispensable element in LIBs that mainly comprises a porous membrane material, necessitates substantial research focus. Scholars have consequently strived to devise novel systems that augment separator efficiency, bolster safety measures, and surmount existing constraints. This review endeavors to equip researchers with comprehensive information on polyolefin-based separator membranes, encompassing performance prerequisites, functional attributes, scientific advancements, and so on. Specifically, it scrutinizes the latest innovations in porous membrane configuration, fabrication, and enhancement that utilize the most prevalent polyolefin materials today. Consequently, robust and enduring membranes fabricated have demonstrated superior effectiveness across diverse applications, facilitating a circular economy that curbs waste materials, reduces operational expenses, and mitigates environmental impact.
Read full abstract