Recently, gamma-glutamyl transpeptidase, which initiates cleavage of extracellular glutathione, has been shown to promote oxidative damage to cells. Here we examined a murine disease model of glomerulosclerosis, involving loss of the Mpv17 gene coding for a peroxisomal protein. In Mpv17-/- cells, enzyme activity and mRNA expression (examined by quantitative RT-PCR) of membrane-bound gamma-glutamyl transpeptidase were increased, while plasma glutathione peroxidase and superoxide dismutase levels were lowered. Superoxide anion production in these cells was increased as documented by electron spin resonance spectroscopy. In the presence of Mn(III)tetrakis(4-benzoic acid)porphyrin, the activities of gamma-glutamyl transpeptidase and plasma glutathione peroxidase were unchanged, suggesting a relationship between enzyme expression and the amount of reactive oxygen species. Inhibition of gamma-glutamyl transpeptidase by acivicin reverted the lowered plasma glutathione peroxidase and superoxide dismutase activities, indicating reciprocal control of gene expression for these enzymes.
Read full abstract