The rapidly growing network of devices that are connected known as the Internet of Things, also referred to as IoT, is designed to collect and exchange data. These devices are integrated with sensors, software, and other technologies. An IPv6-based routing system called 6LowPAN was created especially for Internet of Things devices with little resources. However, because multicast packets must be replicated to every multicast group member, the conventional multicast forwarding technique in 6LowPAN may be wasteful. This can result in excessive energy usage and network traffic, particularly in large-scale Internet of Things implementations. An optimization process is presented here using a multicast forwarding scheme. In the proposed forwarding scheme, nodes can send multicast packets up and down at Low Power and Lossy networks over the 6LowPAN environment. Should the sink node be on the root node, it should immediately request that other nodes join the multicast messaging network of things. If otherwise, an ICMPv6 packet will be sent towards the root node in the Destination-oriented Directed-Acyclic Graphs (DODAG) tree, which expands the multicast messages in the first source's interest. In multi-bounce forward straight-line topology, when the DODAG network root is the source of multicast congestion, it exhibits a similar ratio of packet delivery and delay from end to end with a minimal memory overhead. When traffic via multicast originates from the most important rank node in a backward straight-line topology, this paper focuses on the efficiency of the multicast network at 6LowPAN.
Read full abstract