The progression and outcome of bladder cancer (BLCA) are critically affected by the propensity of tumor metastasis. Our previous study revealed that activation of the mevalonate (MVA) pathway promoted migration of BLCA cells; however, the exact mechanism is unclear. Here we show that elevated expression of MVA pathway enzymes in BLCA cells, correlating with poorer patient prognosis by analyzing single-cell and bulk-transcriptomic datasets. Inhibition of the MVA pathway, either through knockdown of farnesyl diphosphate synthase (FDPS) or using inhibitors such as zoledronic acid or simvastatin, led to a marked reduction in BLCA cell migration. Notably, this effect was reversed by administering geranylgeranyl pyrophosphate (GGPP), not farnesyl pyrophosphate (FPP) or cholesterol, indicating the specificity of geranylgeranylation for cell motility. Moreover, we found that RhoB, a Rho GTPase family member, was identified as a key effector of the impact of the MVA pathway on BLCA metastasis. The post-translational modification of RhoB by GGPP-mediated geranylgeranylation influenced its protein stability through the ubiquitin-proteasome pathway. Additionally, overexpression of RhoB was found to block the membrane translocation of integrin β1 in BLCA cells. In summary, our findings underscore the role of the MVA pathway in BLCA metastasis, providing insights into potential therapeutic targets of this malignancy.
Read full abstract